• Сколькими способами из чисел 1, 2, ..., 2n можно выбрать выбрать два или больше так, чтобы никакие два выбранных числа в сумме не давали 2n+1?



    СРОЧНО!!!

Ответы 1

  • 3n – 2n – 1. Разобьем все 2n чисел на пары чисел, дающих в сумме 2n + 1: (1,2n), (2,2n – 1), , (n,n + 1). Выбирая искомые числа, мы не можем брать два числа из одной пары. Поэтому из первой пары мы можем взять либо первое число 1, либо число 2n, либо не брать ничего. Те же три возможности для выбора мы имеем и для каждой из оставшихся n – 1 пар. Так как эти возможности независимы друг от друга, всего существует 3n наборов чисел, не содержащих двух чисел из одной пары. Среди них есть один пустой и 2n одноэлементных, а остальные 3n – 2n – 1 наборов нам подходят.
    • Автор:

      newttubd
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years