• Что такое действие с рациовальные числами?

Ответы 1

  • Сложение нуля с другим рациональным числомСформулируем правило сложения рационального числа с нулем: прибавление нуля к любому числу дает это же число. С помощью букв это правило записывается так: a+0=a для любого рационального a, а в силу переместительного свойства сложения рациональных чисел также справедливо равенство 0+a=a.Сложение противоположных рациональных чиселТеперь установим, как проводится сложение противоположных рациональных чисел: сумма противоположных чисел равна нулю. В буквенном виде это правило имеет такую запись: a+(−a)=0Сложение положительных рациональных чиселЛюбое положительное рациональное число можно записать в виде обыкновенной дроби. Таким образом, для сложения положительных рациональных чисел нужно знать, как рациональные числа приводятся к виду обыкновенных дробей, и как выполняется сложение обыкновенных дробейЕсли складываемые рациональные числа можно записать как конечные десятичные дроби, либо как смешанные числа, то можно выполнить сложение десятичных дробей и сложение смешанных чиселсоответственно.Сложение рациональных чисел с разными знакамиДля сложения рациональных чисел с разными знакамииспользуется правило сложения чисел с разными знаками: из большего модуля слагаемых надо вычесть меньший, и перед полученным числом поставить знак того числа, модуль которого больше.Сложение отрицательных рациональных чиселСложение отрицательных рациональных чиселпроводится по правилу сложения отрицательных чисел: складываются модули слагаемых и перед полученным числом ставится знак минус.Приведем пример сложения отрицательных рациональных чисел.Вычитание рациональных чиселПереходим к рассмотрению следующего действия над рациональными числами – вычитания. Вычитание является действием, обратным к сложению. То есть, вычитание – это нахождение неизвестного слагаемого по сумме и известному слагаемому. Это также означает, что из равенства c+b=a следует, что a−b=с и a−c=b, и наоборот, из равенств a−b=с и a−c=b следует, что c+b=a.Вычитание из большего положительного рационального числа меньшего числа сводится либо к вычитанию обыкновенных дробей, либо, если это удобно, к вычитанию десятичных дробейВ остальных случаях вычитание рациональных чисел заменяется сложением: к уменьшаемому прибавляется число, противоположное вычитаемому. То есть, a−b=a+(−b).Это равенство доказывается на основании свойств действий с рациональными числами. Они позволяют записать такую цепочку равенств: (a+(−b))+b=a+((−b)+b)=a+0=a, откуда в силу смысла вычитания следует, что сумма вида a+(−b) является разностью чисел Умножение положительных рациональных чиселВ общем случае умножение положительных рациональных чисел можно свести к умножению обыкновенных дробей. Для этого множители нужно представить в виде обыкновенных дробей, если они сразу не являются Иногда удобно работать с конечными десятичными дробями, не выполняя переходВ частном случае умножение положительных рациональных чисел может собой представлять умножение натуральных чисел, умножение натурального числа на обыкновенную дробь или умножение натурального числа на десятичную дробь.Умножение рациональных чисел с разными знакамиДля умножения рациональных чисел с разными знакамиприменяется правило умножения чисел с разными знаками: надо умножить модули множителей и перед полученным числом поставить знак минус. Это правило позволяет от умножения рациональных чисел с разными знаками перейти к умножению положительных рациональных чисел, с которым мы разобрались в предыдущем пункУмножение отрицательных рациональных чиселУмножение отрицательных рациональных чиселсводится к умножению положительных чисел. При этом применяется следующее правило умножения отрицательных чисел: нужно перемножить модули множителей.Деление рациональных чиселДеление представляет собой действие, обратное умножению. Иными словами, деление – это нахождение неизвестного множителя по известному произведению и другому множителю. То есть, смысл деления таков: из равенства b·c=a следует, что a:b=c и a:c=b, и, наоборот, из равенств a:b=c и a:c=b следует, что b·c=a.На множестве рациональных чисел деление сложно считать самостоятельным действием, так как оно выполняется посредством умножения. Об этом свидетельствует следующее правило деления рациональных чисел: разделить число a на отличное от нуля число b – это все равно, что умножить делимое a на число, обратное делителю. То есть, на множестве рациональных чисел a:b=a·b−1.Доказать это равенство не составляет труда. Действительно, в силу свойств действий с рациональными числами справедливы равенства (a·b−1)·b=a·(b−1·b)=a·1=a, которые доказывают равенство a:b=a·b−1.Итак, деление рационального числа на отличное от нуля рациональное число сводится к умножению рациональных чисел.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years