• В алфавите племени Тумба-Юмба 7 букв. Мистер Фокс хочет выписать их в строку (буквы могут повторяться) так, чтобы в любой группе из нескольких последовательных букв некоторая буква встречалась бы ровно один раз. Какую наибольшую длину может иметь такая строка?

Ответы 1

  • Чтобы понять задачу, начнём пробовать с 1 буквы, с двух букв и т.д.Пусть алфавит состоит из одной буквы А. Наибольшая длина требуемой последовательности равна 1, т.е. состоит из 1 буквы А.Пусть алфавит состоит из двух букв А и Б. Тогда требуемая последовательность будет состоять из трёх букв: АБА. Пусть алфавит состоит из трёх букв А, Б и В. Тогда требуемая последовательность будет такая АБАВАБА (7 букв). Т.е. одна буква в середине, а по краям повторяются последовательности, которые были рассмотрены на шаг ранее. И теперь, какую бы последовательность мы не возьмём, одна из букв будет встречаться только один раз.Вырисовывается некая закономерность, поэтому легко составляется последлвательность для алфавита из 4-х букв А, Б, В и Г:АБАВАБАГАБАВАБА (15 букв).Можно таким образом продолжить и далее до алфавита из 7 букв, но заметим, что в последовательности, состоящей из длин требуемой строки, есть закономерность:1, 3, 7, 15, ... - это не что иное, как 2^n -1, где n - количество букв в алфавите. Значит, для n=7 получим:2^7-1 = 127Покажем, что это распространяется для любого n методом математической индукции. Первые шаги нами уже проверены, поэтому предполагаем, что формула верна для некоего числа n. Докажем, что это выполянется и при (n+1).Что мы делали, когда составляли последовательность, добавляя в алфавит ещё одну букву? Мы брали две предыдущие последовательности и в середину вставляли новую букву.(2^n-1) + 1 + (2^n-1) =2*(2^n-1) +1  =2*2^n -2 +1 =2^{n+1} -1Что и требовалось доказать.Ответ: 127
    • Автор:

      anderson7
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years