• Решить тригонометрическое уравнение
    2сos²3x = √3 cos3x

Ответы 1

  • 2cos^2(3x)=\sqrt{3}*cos(3x)
\\2cos^2(3x)-\sqrt{3}*cos(3x)=0
\\cos(3x)(2cos(3x)-\sqrt{3})=0
\\cos3x=0
\\3x= \frac{\pi}{2} +\pi n
\\x_1= \frac{\pi}{6} + \frac{\pi n}{3} , \in Z
\\2cos(3x)-\sqrt{3}=0
\\2cos(3x)=\sqrt{3}
\\cos(3x)= \frac{\sqrt{3}}{2} 
\\3x=\pm  \frac{\pi}{6} +2\pi n
\\x_2= \frac{\pi}{18} + \frac{2\pi n}{3},\ n \in Z
\\x_3=- \frac{\pi}{18} + \frac{2\pi n}{3},\ n \in Z
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years