• Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел. Какое из оставшихся чисел стоит на трёхсотом месте?

Ответы 1

  • 17²=289; 18²=324; 6³=216; 7³=343. Кубы и квадраты совпадают, когда они являются шестыми степенями. В нашем диапазоне это 1 и 64. Квадратов, меньших 300, 17 штук; кубов, меньших 300, 6 штук, но два из них являются также квадратами. Поэтому из чисел, меньших 300, было вычеркнуто 17+6-2=21 число. Из вычеркнутых чисел, больших 300, которые могли повлиять на ответ, ближе всего стоит 324, но оно влияет на места чисел, больших 324. Поэтому остальные квадраты и кубы можно не учитывать. Поэтому на 300-м месте будет стоять число, ранее стоявшее на 321-м месте. Ответ: 321
    • Автор:

      danna
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years