• Уравнение y^2 * dx + (x - 1)^2 * (y + 1) * dy = 0 является :

    1. Дифференциальным уравнением Бернулли ?
    2. Дифференциальным уравнением с разделяющимися переменными ?
    3. Линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами ?
    4. Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами ?

    Уравнение y″ + 2y′ + 3y = 0 является :

    1. Дифференциальным уравнением Бернулли ?
    2. Дифференциальным уравнением с разделяющимися переменными ?
    3. Линейным неоднородным дифференциальным уравнением второго порядка с постоянными коэффициентами ?
    4. Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами ?

Ответы 1

  • y^2dx+(x-1)^2(y+1)dy=0Это дифференциальное уравнение с разделяющимися переменными, так как данное уравнение можно представит в виде произведения двух функций , зависящих только от х и от у:                                 f(x;y)=- \underbrace{\dfrac{y^2}{y+1} }_{p(y)}\cdot \underbrace{ \frac{1}{(x-1)^2} }_{h(x)}Где p(y) и h(x) - непрерывные функции.y''+2y'+3y'=0Это линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Суть решения однородного уравнения сводится к характеристическому уравнению с помощью заменой y=e^{kx}
    • Автор:

      nasirgjoa
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years