где {\displaystyle x} — неизвестное, {\displaystyle a}, {\displaystyle b}, {\displaystyle c} — коэффициенты, причём {\displaystyle \quad aeq 0.}Выражение {\displaystyle ax^{2}+bx+c} называют квадратным трёхчленом[1].Корень — это значение переменной {\displaystyle x}, обращающее квадратный трёхчлен в ноль, а квадратное уравнение в верное числовое равенство.Элементы квадратного уравнения имеют собственные названия[1]:{\displaystyle a} называют первым или старшимкоэффициентом,{\displaystyle b} называют вторым, средним или коэффициентом при {\displaystyle x},{\displaystyle c} называют свободным членом.Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице[1]. Такое уравнение может быть получено делением всего выражения на старший коэффициент {\displaystyle a}:{\displaystyle x^{2}+px+q=0,\quad p={\frac {b}{a}},\quad q={\frac {c}{a}}.}Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.