• На средней линии трапеции CDPL с основаниями CL и DP выбрали произвольную точку E. Докажите, что сумма площадей треугольников DEP и CEL равна половине площади трапеции.

Ответы 1

  • Проведем через точку F высоту трапеции h.Высота h делится точкой F пополам, т.к. располагается на средней линии, а средняя линия делит стороны трапеции пополам.Таким образом получается, что высота обоих треугольников равна h/2.Площадь треугольника равна половине произведения высоты на основание треугольника.Площадь трапеции равна произведению полусуммы оснований на высоту.SBFC=(h/2)*BC/2SAFD=(h/2)*AD/2SBFC+SAFD=(h/2)*BC/2+(h/2)*AD/2=(h/2)(BC+AD)/2=(h*(BC+AD)/2)/2=SABCD/2
    • Автор:

      amirah
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years