• Вычислить длину дуги кривой y=√(5*(x^3)) в пределах от x=0 до x=1
    Помогите пожалуйста через интеграл решить

Ответы 1

  • y=\sqrt{5x^3}\; ,\; \; x_1=0\; ,\; \; x_2=1\\\\l= \int\limits^{b}_{a}\sqrt{1+(y')^2}\, dx\\\\y'=(\sqrt5\cdot x^{3/2})'=\sqrt5\cdot \frac{3}{2}\cdot x^{1/2}\\\\1+(y')^2=1+\frac{5\cdot 9}{4}\cdot x=1+ \frac{45}{4}\cdot x\\\\l= \int\limits^1_0\sqrt{1+\frac{45}{4}\cdot x}\, dx=\frac{4}{45}\cdot \frac{2\cdot (1+\frac{45}{4}\cdot x)^{\frac{3}{2}}}{3}\Big |_0^1=\frac{8}{135}\cdot (1+\frac{45}{4}-1)=\frac{2}{3}
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years