• решить уравнение
    sin(x-60градусов)=cos(x+30градусов)

Ответы 1

  • Sin(x-60)=cos(x+30)Раскроем обе части уравнения по формулам (формулы для раскрытия на картинке):Sin(x-60)=sin(x)*cos(60)-cos(x)*sin(60)cos(x+30)=cos(x)*cos(30)-sin(x)*sin(30)Перенесем все части уравнения на одну сторону:sin(x)*cos(60)-cos(x)*sin(60)-cos(x)*cos(30)+sin(x)*sin(30)=0(sin(x)*cos(60)+sin(x)*sin(30))-(cos(x)*sin(60)+cos(x)*cos(30))=0sin(x)*(cos(60)+sin(30))-(cos(x)*(sin(60)+cos(30))=0sin(x)*2*cos(60)-(cos(x)*2*cos(30))=0sin(x)-cos(x)*√3=0sin(x)=cos(x)*√3sin(x)=√(1-sin²(x))*√3sin(x)=√(3-3*sin²(x))3-3*sin²(x)=sin²(x)3-(3*sin²(x)+sin²(x))=03-4*sin²(x)=04*sin²(x)=0sin(x)=0x=0
    answer img
    • Автор:

      david564
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years