• Боковое ребро правильной треугольной пирамиды образует угол 45° с плоскостью основания. Найдите высоту пирамиды, если сторона основания равна 6√3

Ответы 1

  • Пусть SABC- пирамида, SO-высота пирамиды (падает в точку пересечения высот основания-Δ АВС), а АН- высота основания. По теореме Пифагора АН=√ АС^2-СН^2. CH=1/2AC=3√3. Тогда АН=√36*3-9*3=√27*3=9 смАО=2/3АН=9*2/3=6 см. Δ АSO-прямоугольный(SO-высота) и равнобедренный(∡SAH=45-по условию). Отсюда SO=АН=6 см.
    • Автор:

      buchanan
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years