Ответы 1

  • \displaystyle log_2(17x^2+16)-log_2(x^2+x+1) \geq log_2( \frac{x}{x+10}+16)\\\\ODZ: \left \{ {{17x^2+16\ \textgreater \ 0; x^2+x+1\ \textgreater \ 0} \atop { \frac{x+16x+160}{x+10}\ \textgreater \ 0}} ight.\\\\ \left \{ {{x\in R} \atop { \frac{17x+160}{x+10}\ \textgreater \ 0} ight. \\\\  __+____ -10__-____ -160/17___+_____ODZ: (-oo;-10)(-160/17;+oo)решение\displaystyle log_2( \frac{17x^2+16}{x^2+x+1}) \geq log_2( \frac{17x+160}{x+10})\\\\ 2\ \textgreater \ 1\\\\ \frac{17x^2+16}{x^2+x+1} \geq \frac{17x+160}{x+10}    \displaystyle  \frac{(17x^2+16)(x+10)-(17x+160)(x^2+x+1)}{(x^2+x+1)(x+10)} \geq 0\\\\ \frac{-7x^2-161x}{(x^2+x+1)(x+10)} \geq 0\\\\ \frac{-x(7x+161)}{(x^2+x+1)(x+10)} \geq 0   __+___-23__-___-10___+___0____-_ответов в неравенстве (-oo;-23] (-10;0]с учетом ОДЗОТВЕТ: (-oo;-23] (-160/17; 0]
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years