• Треугольник ABC вписан в окружность радиуса R. На сторонах AB и AC отметили соответственно точки М и N так, что AM:MB=AN:NC=3. Найдите радиус окружности, по которой движется точка пересечения отрезков BN и CM, если точка А движется по описанной окружности треугольника ABC. В качестве ответа дайте отношение радиуса описанной окружности к радиусу окружности, по которой движется точка пересечения этих отрезков

Ответы 1

  • Поскольку  \frac{AM}{MB} =\frac{AN}{NC}  , то треугольники MAN и BAC подобны. Значит MN параллелен BC ⇔ BMNC - трапеция. При этом BN и MC - диагонали. В трапеции отрезок, соединяющий середины оснований, продолжения боковых сторон и точка пересечения диагоналей лежат на одной прямой. Следовательно, AT - медиана треугольника ABC. Заметим, что отношение "расстояний" пройденных точками A и O равно искомому отношению диаметров окружностей, что равно отношению радиусов. Точка T зафиксирована. Спроецируем путь пройденный точкой O на вертикальную ось. Получим длину диаметра окружности. Данный диаметр пропорционален длине отрезка OT. Точка A пройдет весь путь окружности, проекция этого пути равна диаметру описанной окружности. Так как точка O лежит на отрезке AT, то пройденный путь пропорционален диаметру описанной окружности с тем же коэффициентом пропорциональности, что и отношение отрезка OT к соответствующему пути. Получили, что искомое отношение радиусов равно отношению  \frac{OT}{AT}  . Пусть MB = x, AM = 3x; AN = 3y; NC = y; TC = BT; По теореме Менелая:  \frac{x}{3x}\times\frac{AO}{OT}\times\frac{1}{2} =1 \Leftrightarrow \frac{AO}{OT}=6    , Значит  \frac{OT}{AT}=\frac{1}{7}   ; Ответ: 7:1

    answer img
    • Автор:

      quentin
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years