• При каком наибольшем целом значении a точка x=Pi будет точкой максимума функции y=2^(-a*cos(x)^2)?

    Требуется подробное решение

Ответы 1

  • Рассмотрим саму функцию

     f(x)=2^{-a*Cos^2(x)

    Ее производная

     f'(x)=a*ln(2)*Sin(2x)*2^{-aCos^2(x)}

    Очевидно,  f'(\pi)=0 независимо от значения параметра  a , т.е. необходимое условие экстремума выполнено в любом случае. Также в любом случае справедливо неравенство  2^{-aCos^2(x)} *ln(2)>0

    Значит на знак производной влияет только знак произведения  a*Sin(2x) , максимум будет если  a*Sin(2x)>0 слева от точки  x=\pi и  a*Sin(2x)<0 справа от нее же.

    Эти условия выполняются при любом  a<0 , но т.к. требуется наибольшее целое, то  a=-1

    • Автор:

      camilo
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years