• Найдите наибольшее значение функции y = log5 (6x - x^2 + 16)

Ответы 1

  •  y=\log_5(6x-x^2+16)=\log_5(-(x^2-6x+9)+25)=\log_5(-(x-3)^2+25)

    Если рассмотреть функцию под логарифмического выражения, то графиком функции квадратичной функции является парабола, ветви направлены вниз. Квадратичная функция достигает наибольшего значения в точке х=3, равно 25.

    В данном случае, заданная функция достигает наибольшего значения в точке х=3, равное  y=\log_525=2

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years