• Вычислить криволинейный интеграл I рода по плоской кривой :

    question img

Ответы 1

  •  \displaystyle \tt \iint_{\Gamma}(x-y)ds=\int\limits^1_{-1}dx\int\limits^0_{-\sqrt{1-x^2}}(x-y)dy=\int\limits^1_{-1}\bigg(xy-\frac{y^2}{2}\bigg)\bigg|^0_{-\sqrt{1-x^2}}=\\ \\ =\int\limits^1_{-1}\bigg(x\sqrt{1-x^2}+\frac{1-x^2}{2}\bigg)dx=\bigg(-\frac{(1-x^2)^{3/2}}{3}-\frac{x^3}{6}+\frac{x}{2}\bigg)\bigg|^1_{-1}=\\ \\ =\frac{1}{3}-\bigg(-\frac{1}{3}\bigg)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}

    answer img
    • Автор:

      ayden420
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years