• В сундуке у Хагрида хранится 155 шариков десяти различных цветов. Некоторые шарики волшебные и могут в разные моменты оказаться любого из этих десяти цветов (но меняют цвет только тогда, когда сундук закрыт и заперт). Однажды Хагрид открыл сундук, пересчитал шарики каждого цвета (каждого цвета оказалось разное количество шариков), выписал список цветов в порядке убывания количества шариков, закрыл и запер сундук. На следующий день Хагрид проделал то же самое и обнаружил, что в его втором списке цвета идут в точности в обратном порядке (по отношению к первому списку). Какое наименьшее количество волшебных шариков может быть в сундуке?

Ответы 2

  • а если 105 шариков?
  • Пусть цвета будут a1,a2,a3,...,a10

    Поделим шары на две группы ((x1,x2,x3,x4,x5),(y1,y2,y3,y4,y5)) так чтобы им соответствовали цвета ((a1,a2,a3,a4,a5),(a6,a7,a8,a9,a10)) соотвественно и выполнялись неравенства x1> x2...x5>y1>y2...>y5  

    Тогда нужно найти минимум значение разности

    S=(x1-x1)+(x2-y2)+...(x5-y5)

    При условий

    x1+x2+...+x5+y1+y2+...+y5=155

    Тогда S=155-2(y1+y2+y3+y4+y5)

    То есть надо найти максимум y1+y2+y3+y4+y5

    Так как все числа разные и отметим что

    11+12+13+14+15+16+17+18+19+20=155

    То сумма первых 5 чисел не может быть больше 15*5=75

    Значит максимум y1+y2+y3+y4+y5=11+12+13+14+15=65 откуда

    S=155-2*65=25

     Ответ 25

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years