• Чьи имена людей связаны со словом пропорция. Кто первый употребил это слово.

Ответы 2

  • Кто первый употребил это слово?кто исп и тп. Мне не нужна эта лекция
    • Автор:

      stewart
    • 5 лет назад
    • 0
  • Обращение пропорции. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то {\displaystyle \ {\frac {b}{a}}={\frac {d}{c}}} \ {\frac  ba}={\frac  dc}

    Перемножение крайних членов пропорции со средними (крест-накрест). Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то {\displaystyle \ ad=bc} \ ad=bc

    Перестановка средних и крайних членов. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то

    {\displaystyle \ {\frac {a}{c}}={\frac {b}{d}}} \ {\frac  ac}={\frac  bd}    (перестановка средних членов пропорции),

    {\displaystyle \ {\frac {d}{b}}={\frac {c}{a}}} \ {\frac  db}={\frac  ca}    (перестановка крайних членов пропорции).

    Увеличение и уменьшение пропорции. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то

    {\displaystyle \ {\dfrac {a+b}{b}}={\dfrac {c+d}{d}}} \ {\dfrac  {a+b}{b}}={\dfrac  {c+d}{d}}    (увеличение пропорции),

    {\displaystyle \ {\dfrac {a-b}{b}}={\dfrac {c-d}{d}}} \ {\dfrac  {a-b}{b}}={\dfrac  {c-d}{d}}    (уменьшение пропорции).

    Составление пропорции сложением и вычитанием. Если {\displaystyle \ {\frac {a}{b}}={\frac {c}{d}}} \ {\frac  ab}={\frac  cd}, то

    {\displaystyle \ {\dfrac {a+c}{b+d}}={\frac {a}{b}}={\frac {c}{d}}} \ {\dfrac  {a+c}{b+d}}={\frac  ab}={\frac  cd}    (составление пропорции сложением),

    {\displaystyle \ {\dfrac {a-c}{b-d}}={\frac {a}{b}}={\frac {c}{d}}} \ {\dfrac  {a-c}{b-d}}={\frac  ab}={\frac  cd}    (составление пропорции вычитанием).

    История

    Первое известное определение равных пропорций было дано как равенство последовательных вычитаний[1], современным языком это можно выразить как равенство цепных дробей для отношений величин.[2] Позже Евдокс упростил определение, равенство пропорций {\displaystyle a:b=c:d} {\displaystyle a:b=c:d} им определялось как одновременное выполнение одной из трёх пар соотношений

    {\displaystyle m\cdot a>n\cdot b} {\displaystyle m\cdot a>n\cdot b} и {\displaystyle m\cdot c>n\cdot d} {\displaystyle m\cdot c>n\cdot d},

    {\displaystyle m\cdot a=n\cdot b} {\displaystyle m\cdot a=n\cdot b} и {\displaystyle m\cdot c=n\cdot d} {\displaystyle m\cdot c=n\cdot d},

    {\displaystyle m\cdot a<n\cdot b} {\displaystyle m\cdot a<n\cdot b} и {\displaystyle m\cdot c<n\cdot d} {\displaystyle m\cdot c<n\cdot d}

    для любой пары натуральных чисел {\displaystyle m} m и {\displaystyle n} n. Это определение даётся в «Началах» Евклида.

    С появлением вещественных чисел отпала необходимость в специальной теории пропорций, древние математики не рассматривали пропорции длины как числа. Определение Евдокса, в несколько более абстрактном виде использовалось далее при определении вещественных чисел данное Дедекиндом через сечения.

    Связанные определения

    Арифметическая пропорция

    См. также: Среднее арифметическое

    Равенство двух разностей {\displaystyle a-b=c-d} a-b=c-d иногда называют арифметической пропорцией[3].

    Гармоническая пропорция

    Основная статья: Золотое сечение

    Если у геометрической пропорции средние члены равны, а последний является разницей между первым и средним, такая пропорция называется гармонической: {\displaystyle a:b=b:(a-b)} a:b=b:(a-b). В этом случае, разложение {\displaystyle a} a на сумму двух слагаемых {\displaystyle b} b и {\displaystyle a-b} a-b называется гармоническим делением или золотым сечением[4].

    Задачи на тройное правило

    В содержание задачи на простое тройное правило входят две величины, связанные пропорциональной зависимостью, при этом даются два значения одной величины и одно из соответствующих значений другой величины, требуется же найти её второе значение.

    Задачами на сложное тройное правило называют задачи, в которых по ряду нескольких (более двух) пропорциональных величин требуется найти значение одной из них, соответствующее другому ряду данных значений величин[5][6].

    • Автор:

      kiki87
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years