• Чему может быть равно значние выражения p^4-3p^3-5p^2+16p+2015, если p является корнем уравнения x^3-5x+1=0?

Ответы 2

  • p⁴- 3p³- 5p² + 16p+2015 = p(p³ - 5p) - 3(p³ -5p) +p +2015= - p+3+p +2015 =2018
    • Автор:

      cason6orh
    • 5 лет назад
    • 0
  • Если p - корень уравнения, то справедливо равенство p^3-5p+1=0; Тогда p^3-5p = -1. Получаем систему:

    p^3-5p=-1

    p^4-3p^3-5p^2+16p+2015 - ?

    Преобразуем выражение: p(p^3-5p)-3p^3+16p+2015. Мы знаем, что p^3-5p=-1, поэтому:

    -p-3p^3+16p+2015

    15p-3p^3+2015

    -3(p^3-5p)+2015.

    Опять же заменяем p^3-5p на -1, получаем

    3+2015 = 2018

    Ответ: 2018

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years