Предмет:
МатематикаАвтор:
larry89для N=1
5*2^(3-2) + 3^(3-1)=10+9=19 делится
предположим что верно для N, тогда верно и для N+1
5*2^(3N-2)+3^(3N-1) верно
Доказать что 5*2^(3(N+1)-2)+3^(3(N+1)-1) тоже делится на 19
5*2^(3(N+1)-2)+3^(3(N+1)-1)=5*2^(3N+3-2)+3^(3N+3-1)=5*2^(3N+1)+3^(3N+2)=
= 5*2^(3N-2)*2^3+3^(3N-1)*3^3=5*2^(3N-2)*8+3^(3N-1)*27=5*2^(3N-2)*8+3^(3N-1)*8+3^(3N-1)*19=8*(5*2^(3N-2)+3^(3N-1))+3^(3N-1)*19
два слагаемых - второе делится так как один из сомножителей кратен 19, в первом слагаемом в скобках тоже делится на 19 как предположение при N
Автор:
kameronmayДобавить свой ответ
Предмет:
АлгебраАвтор:
keenankerrОтветов:
Смотреть
Предмет:
Окружающий мирАвтор:
killianОтветов:
Смотреть
Предмет:
Русский языкАвтор:
emmygskeОтветов:
Смотреть
Предмет:
АлгебраАвтор:
carleymcldОтветов:
Смотреть