Ответы 1

  • \displaystyle(\frac{1}{3})^{-x}+3^x+3 \leq 12;\\\frac{1}{3^x}+3^x+3 \leq 12;\ t=3^x;\ t>0;\\\frac{1}{t}+t+3-12\leq 0;

    1+t²-9t ≤ 0;

    t²-9t+1=0; решим квадратное уравнение

    D=81-4*1=77;

    t=(9+√77)/2;

    t=(9-√77)/2;

    \displaystyle t=\frac{9\pm\sqrt{77}}{2};\\3^x=\frac{9\pm\sqrt{77}}{2};\\x=log_3\frac{9\pm\sqrt{77}}{2};

    \displaystyle \ \ \ \ + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \\. \ \ \ \ \ \ \ \ \ log_3\frac{9-\sqrt{77}}{2} \ \ \ \ \ \ \ \ \ \ log_3\frac{9+\sqrt{77}}{2}\\\\x \in [log_3\frac{9-\sqrt{77}}{2};log_3\frac{9+\sqrt{77}}{2}];

    • Автор:

      wizard
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years