• В некоторой геометрической прогрессии с положительным знаменателем 300 членов. Их сумма в 6^{200}+6^{100}+1 раз больше суммы ее первых 100 членов. Во сколько раз произведение тех членов этой прогрессии, номера которых оканчиваются на 9, больше произведения членов с номерами, оканчивающимися на 4?

Ответы 1

  • S(300)/S(100) = (q^300-1)/(q^100-1) = 6^200+6^100+1  

    q^200+q^100+1=6^200+6^100+1    

    Откуда q=6

    Требуется найти между

    (b9*b19*b29*...b299)/(b4*b14*b24*b294) =  (b1^30 * q^(8+18+28+38+...+298)) /(b1^30*q^(3+13+23+33+...+293)) = q^((16+10*29)*15) /q^((6+10*29)*15) = q^(4590)/q^(4440) = q^150 = 6^150 раз  

    • Автор:

      boone17
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years