• диагонали выпуклого четырехугольника делят его на 4 треугольника.Докажите, что произведение площадейдвух противоположных треугольников равно произведению двух других треугольников 16 б даю

Ответы 1

  • Пусть диагонали AC и BD выпуклого четырехугольника ABCD пересекаются в точке O. Опустим перпендикуляры BE и DF на отрезок AC. Выпишем формулы площадей треугольников (половина высоты на основание):

    S_{AOD} =\frac{1}{2} *AO*DF\\S_{DOC} =\frac{1}{2} *OC*DF\\S_{AOB} =\frac{1}{2} *AO*BE\\S_{BOC} =\frac{1}{2} *OC*BE\\

    Найдем произведение площадей треугольников:

    S_{AOD} *S_{BOC} =\frac{1}{2} *AO*DF*\frac{1}{2} *OC*BE=\frac{1}{4} *AO*DF*OC*BE\\=\frac{1}{2} *AO*BE*\frac{1}{2} *OC*DF=\frac{1}{4} *AO*DF*OC*BE

    Т.к. равны правые части равенств, то равны и левые:

    S_{AOD} *S_{BOC}=S_{AOB} *S_{DOC}

    что и требовалось доказать.

    • Автор:

      isaac837
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years