• Дана последовательность xk такая, что x1 = 1, xn + 1 = n sin xn + 1.
    Докажите, что последовательность непериодична.

Ответы 1

  • Предположим, что она периодична и длина периода равна T, тогда xm + T = xm и xm + T + 1 = xm + 1 при m ≥ m0. Если при некотором m ≥ m0  sin xm ≠ 0, то xm + T + 1 = (m + T) sin xm + T + 1 = (m + T) sin xm + 1 ≠ m sin xm + 1 = xm + 1. А если  sin xm = 0, то xm + 1 = 1, и  sin xm + 1 =  sin 1 ≠ 0, так что предыдущее рассуждение применимо к xm + 1. Таким образом получаем противоречие
    • Автор:

      nigel
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years