• Найти наибольшую площадь полной поверхности цилиндра вписанного в сферу радиуса

Ответы 1

  • Ответ:

    Пошаговое объяснение:

    Пусть радиус вписанного цилиндра равен х, а его высота равна 2у. Тогда его боковая поверхность равна 2*пи*х*у. Кроме того, по теореме Пифагора х^2 + у^2 = r^2. Согласно известному соотношению между средним квадратичным и средним геометрическим двух чисел значение х*у будет максимально, если х = у. Тогда х = у = rV2/2, и 2*пи*х*у = 2*пи * rV2/2 * rV2/2 = пи*r^2.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years