• Найдите все значения А, при каждом из которых любое действительное число X является решением неравенства x^2+(3a+2)x-2a>=0

    Пожалуйста, помогите

Ответы 1

  • Ответ: a ∈ [-2;-2/9]

    Пошаговое объяснение:

    f(x)=x^2+(3a+2)x-2a — парабола, ветви которой направлены вверх. Неравенство выполняется для всех х, если D≤0, (парабола расположена выше оси Ох и одна общая точка с осью Ох, так как неравенство по условию нестрогое.)

    D=(3a+2)^2+8a\leqslant 0\\ 9a^2+12a+4+8a\leqslant0\\ 9a^2+20a+4\leqslant0\\ 9(a+2)(a+\frac{2}{9})\leqslant0~~\Leftrightarrow~~ a \in [-2;-\frac{2}{9}]

    • Автор:

      queen75
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years