• Докажите что при любом натуральном n число n(2n^2 + 1) кратно 3

Ответы 2

  • Если n кратно 3, то это выражение кратно трём.Если n не кратно 3, то чтобы это выражение должно было кратно 3, надо чтобы (2n²+1) было кратно 3. При деление на 3 n² даёт остаток 1(при n не кратном 3). Значит, 2n² даёт остаток 2. А если ещё прибавить единицу, то 2n²+1 будет делится на 3.Что и требовалось доказать.
    • Автор:

      diego61
    • 5 лет назад
    • 0
  • Доказательство методом математической индукции

    answer img
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years