• Отрезок ка перпендикуляр к плоскости квадрата ABCD площадь которого 36 см в квадрате Обоснуйте расстояние между прямыми КА и ВС

Ответы 1

  • Ответ:

    6 см

    Пошаговое объяснение:

    Так как Sabcd = 36 см² = a², a = 6 см (a - сторона квадрата)

    Прямые KA и BC - скрещивающиеся (BC лежит в (ABC), а AK пересекает (ABC) в точке, не лежащей на BC), значит, расстояние между ними - это длина перпендикуляра, опущенного из точки, лежащей на AK, к некоторой плоскости α, содержащей BC и параллельной AK. Такой отрезок - это AB (действительно, AB⊥α, т. к. AB⊥BC; AK||BM, AK⊥(ABC) ⇒ AK⊥AB ⇒ BM⊥AB; BC∩BM). Но AB - это сторона квадрата, а она равна 6 см.

    answer img
    • Автор:

      mathew
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years