• Несколько последовательных натуральных чисел выписали в строку в таком порядке, что сумма каждых трёх подряд идущих чисел делится нацело на первое число этой тройки. Какое максимальное количество чисел могло быть выписано, если последнее число строки нечётно? даю 60 баллов

Ответы 1

  • Ответ: 5

    Пошаговое объяснение:Заметим, что если в тройке подряд стоящих чисел левое число чётно, то и сумма чисел этой тройки чётна. Значит, после каждого чётного числа в строке должны стоять два числа одной чётности. В частности, если два чётных числа стоят подряд, то все следующие за ними числа – чётные. Но это противоречит условию. Поэтому после каждого чётного числа (кроме, может быть, самого последнего) в строке стоят два нечётных. Следовательно, чётных чисел не более двух (в противном случае количество нечётных чисел было бы по крайней мере на 2 больше, чем количество чётных, что для последовательных чисел невозможно). Поэтому всех чисел не более пяти.  

     Пять чисел выписать можно, например: 2, 1, 3, 4, 5.

    • Автор:

      miriam
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years