• Найти промежутки монотонности и точки экстремумы функции y =x^3-6x^2+8

Ответы 1

  • y=x^3-6x^2+8\\y'=3x^2-12x\\3x^2-12x=0\\3x(x-4)=0\\x_1=0,\;x_2=4

    При x∈(-∞; 0) f'(x)>0 - функция возрастает.

    При x∈(0; 4) f'(x)<0 - функция убывает.

    При x∈(4; +∞) f'(x)>0 - функция возрастает.

    y(0) = 0-0+8 = 8, (0; 8) - точка максимума

    y(4) = 64-96+8 = -24, (4; -24) - точка минимума.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years