• На основании AC равнобедренного треугольника ABC взята точка E, а на боковых сторонах AB и BC — точки
    K и M, так что KE параллельно BC и EM параллельно AB. Какую
    часть площади треугольника ABC занимает площадь треугольника
    KEM, если BM : EM = 2 : 3?

Ответы 1

  • Ответ:

    6/25

    Пошаговое объяснение:

    Так как КЕ параллельно ВС и ЕМ параллельно АВ, то мы можем утверждать что это среднии линии для треугольников АВС с основаниями АВ и ВС. Так как это равнобедренный треугольник, то ЕМ = КЕ. Значит мы имеем равнобедренный треугольник КЕМ. ВМ : ЕМ= ВМ : МС, так сторона ВС=ВА по условию. Основание треугольника КМ тоже является средней линией треугольника АВС с основанием АС. Отношение средней линии и основание равно 2/5(Так как у нас 5 частей 3+2 и 2 части это средняя линия). Рассматривая МЕ  и  КЕ как средней линии треугольников, мы получаем соотношение средней линии к основанию 3/5.

    Площадь треугольника равна 1/2*основание*h

    Основание треугольника КМЕ в 2/5 раза больше чем основание треугольника АВС. Высота в 3/5 раза больше. Получаем площадь малого треугольника:

    1/2 * AC*2/5 *h*3/5=1/2 AC * h*6/25

    6/25 часть

    • Автор:

      patch
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years