Предмет:
МатематикаАвтор:
shadow40Задание.
Решить уравнение:
\[{m cos}\ x=\frac{1}{3}.\]
Решение.
Исходное уравнение относят к простым видам тригонометрических уравнений, для которых существует специальная формула, согласно которой легко найти все корни данного уравнения.
Разберемся, что значит — решить уравнение. Это значит, что нужно найти такие аргументы для заданной функции, при которых косинус будет равен \frac{1}{3}. Сразу можно обратиться к таблице значений тригонометрических функций, в частности косинуса. В таблице ищем среди значений косинуса число \frac{1}{3}. Таких чисел для косинуса нет, это значит, что косинус может быть равен этому значению от каких-либо других углов, отличных от тех, которые представлены в таблице.
Что такой угол существует, говорит тот факт, что значение \frac{1}{3} лежит между —1 и 1. Только на этом промежутке могут находиться значения функции косинус.
Для таких случаев используется специальная формула, которая использует обратную функцию к косинусу — арккосинус. Запишем решение согласно этой формуле:
x={{m \pm }\arccos \frac{1}{3}\ }+2\pi z, переменная z может быть любым целым числом.
Ответ. x={{m \pm }\arccos \frac{1}{3}\ }+2\pi z, z —целое число.
Также о существовании корней любого уравнения можно узнать из графика функции. Или с помощью тригонометрической окружности.
Автор:
zainvillaДобавить свой ответ
Предмет:
Русский языкАвтор:
kirby52Ответов:
Смотреть
Предмет:
МатематикаАвтор:
estrellaОтветов:
Смотреть
Предмет:
Английский языкАвтор:
jonahОтветов:
Смотреть
Предмет:
ГеографияАвтор:
shuttershywfsdОтветов:
Смотреть