• среди 2012 внешне неразличимых шариков половина имеет один вес ,а вторая половина-другой.Требуется выделить две кучки шариков так,чтобы количество шариков в кучках было одинаковым,а массы кучек- разными.Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?

Ответы 1

  • Делим общее кол-во шариков на три кучки . Получаем 670 шт. и одну по 2 шт.

    Далее взвесим 1-ую и 2-ую кучки и проверим равны они или нет. Если они не равны, то это - искомые кучки.

    Потом взвесим 1-ую и 3-ю, если они не равны -значит это и есть искомые. Если все 3  оказались равными, то воспользуемя тем, что в каждой теперь по 335 шариков лёгких. Это потому, что всего лёгких шариков 1006 (вычитаем 1, который в кучке № 4).Меньше или больше быть не может, это не будет соответствовать условию задачи.

     

    Ответ: 2 взешивания

    • Автор:

      kaylahgay
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years