• Помогите, пожалуйста, и подробно решение распишите:
    1+log2(x+5)=log2(3x-1)+log2(x-1)

Ответы 1

  • Ответ:

    x=3

    Пошаговое объяснение:

    ОДЗ:

    \displaystyle\large \begin{cases} &x-1>0\\&3x-1>0\\&x+5>0\end{cases} \Leftrightarrow \begin{cases}&x>1\\&x>{1\over3}\\&x>-5\end{cases}

    Решаем уравнение:

    \displaystyle\large \log_2{2}+\log_2(x+5)=\log_2(3x-1)+\log_2(x-1)\\\\ \log_2(2x+10)=\log_2((3x-1)\cdot(x-1))\\\\ \log_2(2x+10)=\log_2(3x^2-4x+1)\\\\ 2x+10=3x^2-4x+1\\\\ 3x^2-6x-9=0\\\\ x^2-2x-3=0\\\\ x_1=-1, x_2=3

    По ОДЗ

    \displaystyle x>1

    Значит остается один корень

    \displaystyle x=3

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years