Предмет:
МатематикаАвтор:
hubbysyd8Если раскрыть скобки уравнения функции y = (x-9)² * (x-6) + 3, то получим уравнение кубической функции y = x³ - 24x³ + 189x - 483.
Производная этой функции равна:
y' = 3x² - 48x + 189 = 3( x² - 16x + 63).
Приравняем её нулю (достаточно выражение в скобках).
x² - 16x + 63 = 0. Д = (-16)² - 4*63 = 256 - 252 = 4.
х1 = (16 - 2)/2 = 7 и х2 = (16 + 2)/2 = 9.
Определяем свойства полученных критических точек по знакам производной.
х = 6 7 8 9 10
y' = 9 0 -3 0 9 .
Как видим, максимум функции в точке х = 7 (переход с + на -).
Автор:
bryleerc7mДобавить свой ответ
Предмет:
Русский языкАвтор:
ericzm7yОтветов:
Смотреть
Предмет:
Английский языкАвтор:
barrett16Ответов:
Смотреть
Предмет:
МатематикаАвтор:
pinkykcdhОтветов:
Смотреть