Предмет:
МатематикаАвтор:
lily34The given equation is:
(sqrt(x*y) - sqrt(x))*dx + (sqrt(x*y) sqrt(y))*dy = 0
To solve this equation, we can rearrange it and separate the variables:
(sqrt(x*y) - sqrt(x))dx = - (sqrt(x*y) sqrt(y))dy
Divide both sides of the equation by sqrt(y) and dx:
(sqrt(x)/sqrt(y) - 1/sqrt(y)) dx = - sqrt(x) dy
Now, we can integrate both sides of the equation with respect to their respective variables:
∫(sqrt(x)/sqrt(y) - 1/sqrt(y)) dx = - ∫sqrt(x) dy
To integrate the left side with respect to x, we treat sqrt(y) as a constant:
(sqrt(y)/sqrt(y)) * ∫sqrt(x) dx - (1/sqrt(y)) * ∫dx = - ∫sqrt(x) dy
Simplifying the integrals:
∫sqrt(x) dx - (1/sqrt(y)) * x = - ∫sqrt(x) dy
Integrating both sides:
(2/3) x^(3/2) - (x/sqrt(y)) = - (2/3) y^(3/2) + C
Where C represents the constant of integration. This is the general solution to the given equation.
Автор:
Fedoseewa27Добавить свой ответ
Предмет:
ЛитератураАвтор:
nataliejyogОтветов:
Смотреть
Предмет:
ХимияАвтор:
foxy ladyijhfОтветов:
Смотреть
Предмет:
ГеометрияАвтор:
diegogomezОтветов:
Смотреть