• В основании пирамиды SABCD лежит квадрат, и высота пирамиды SB. Боковое ребро AS образует с основанием пирамиды угол 30 градусов.

    а) Вычислите значение угла SAD. Обоснуйте.

    б) Докажите, что площадь грани ASB равна 1/6 от площади боковой поверхности пирамиды.

    question img

Ответы 1

  • а) Прямая AD перпендикулярна двум прямым АВ и SВ, лежащим в плоскости АВS, поэтому по теореме о трех перпендикулярах она перпендикулярна и любой прямой, принадлежащей этой плоскости, значит перпендикулярна и прямой SA.

    Ответ: угол SAD равен 90 градусов.

    б) Примем сторону основания за 1.

    Если боковое ребро AS образует с основанием пирамиды угол 30 градусов, то высота пирамиды SВ равна 1*tg 30 = 1/√3.

    Площади граней SAВ и SВС равны по (1/2)*1*(1/√3) = 1/(2√3).

    Боковое ребро SA равно SС и равно √(1² + (1/√3)²) = √(4/3) = 2/√3.

    Площади граней SAD и SСD равны по (1/2)*1*(2/√3) = 1/√3.

    Площадь боковой поверхности равна:

    Sбoк = 2*(1/(2√3)) + 2*(1/(√3)) = 3/√3.

    Отношение площади грани SAВ к Sбoк равно:

    SAВ/Sбoк = (1/(2√3) )/(3/√3) = 1/6.

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years