Помогите пожалуйста задачу по геометрии решить
Основанием пирамиды является ромб, сторона которого равна 20 см и острый угол равен 30°. Все двугранные углы при основании равны 60°. Вычисли высоту и площадь боковой поверхности пирамиды.
Если все двугранные углы при основании равны 60°, то проекция высоты боковой грани на основание - это радиус вписанной в основание окружности, равный половине высоты h ромба.h = a*sin30° = 20*(1/2) = 10 см, тогда h/2 = 10/2 = 5 см.Находим высоту боковой грани:hгр = (h/2)/cos 60° = 5/(1/2) = 10 см.Sбок = (1/2)*Р*hгр = (1/2)*(4*20)*10 = 400 см²Высота пирамиды равна:H = (h/2)*tg 60° = 5√3 см.