• Найдите экстремумы функции y=x^4-2x^2+2
    Найдите экстремумы функции y=x^4-2x^2+2

Ответы 2

  • y=x^4-2x^2+2=(x^2-1)+1Экстремальные точки x=-1, x=1, x=0Перед x^4 k=1>0 (функция убывает, возрастает, убывает, возрастает)Убывает на (-∞;-1] и на [0;1]Возрастает на [-1;0] и на [1;+∞)x=±1 точки минимума y(±1)=1x=0 точка максимума y(0)=2
    • Автор:

      mischief
    • 4 года назад
    • 0
  • y' = 4x³−4xy' = 04x³−4x = 04x(x²−1) = 0x₁ = 0x²−1 = 0x² = 1x₂ = −1x₃ = 1x∈(−∞;−1) ⇒ 4x(x²−1) < 0 ⇒ y' < 0x∈(−1;0) ⇒ 4x(x²−1) > 0 ⇒ y' > 0x∈(0;1) ⇒ 4x(x²−1) < 0 ⇒ y' < 0x∈(1;+∞) ⇒ 4x(x²−1) > 0 ⇒ y' > 0x = −1 и x = 1 - точки минимумаx = 0 - точка максимумаy(−1) = (−1)⁴−2(−1)²+2 = 1−2+2 = 1 - минимум функцииy(1) = 1⁴−2⋅1²+2 = 1−2+2 = 1 - минимум функцииy(0) = 0⁴−2⋅0²+2 = 2 - максимум функции
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years