( Log4 ( 2 ^ x - 1 ) ) / ( x - 1 ) < = 1 ; ( Log4 ( 2 ^ x - 1 ) ) < = 1 * ( x - 1 ) ; ( Log4 ( 2 ^ x - 1 ) ) < = ( x - 1 ) ; Log4 ( 2 ^ x - 1 ) < = ( x - 1 ) ; ( 2 ^ x - 1 ) < = 4 ^ ( x - 1 ) ; 2 ^ x - 1 < = 4 ^ x * 4 ^ ( - 1 ) ; 2 ^ x - 1 < = 4 ^ x * 1 / 4 ; 2 ^ x * 4 - 1 * 4 < = 4 ^ x * 1 / 4 * 4 ; 4 * 2 ^ x - 4 < = 4 ^ x ; 4 * 2 ^ x - 4 - 4 ^ x < = 0 ; - ( 4 ^ x - 4 * 2 ^ x + 4 ) < = 0 ; 4 ^ x - 4 * 2 ^ x + 4 > = 0 ; Пусть 2 ^ x = a, тогда: a ^ 2 - 4 * a + 4 > = 0 ; ( a - 2 ) ^ 2 > = 0 ; ( a - 2 ) > = 0 ; То есть, ( 2 ^ x - 2 ) > = 0 ; 2 ^ x > = 2 ; 2 ^ x > = 2 ^ 1 ; x > = 1.