1 ) Найдем производную y = 2 / ( x -1 ) при х0 = 4; Производная у = ( 2 / ( x - 1) ) \' = ( 2 \' * ( x - 1 ) - ( x - 1) \' * 2 ) / ( x - 1 ) ^ 2 = ( 0 * ( x - 1 ) - 2 * ( x \' - 1 \' ) / ( x - 1 ) ^ 2 = ( - 2 * ( 1 - 0 ) ) / ( x - 1 ) ^ 2 = - 2 / ( x - 1 ) ^ 2 = - 2 / ( 4 - 1 ) ^ 2 = - 2 / ( 3 ) ^ 2 = - 2 / 9 ;2 ) y = √( х + 4 ) при х ( 0 ) = 9 ; Производная у = ( √( х + 4 ) ) \' = ( ( x + 4 ) ^ ( 1 / 2 ) ) \' = 1 / 2 * ( x + 4 ) ^ ( 1 / 2 - 1 ) * ( x + 4 ) \' = 1 / ( 2 * √( х + 4 ) ) * 1 = 1 / ( 2 * √( х + 4 ) ) = 1 / ( 2 * √( 9 + 4 ) ) = 1 / ( 2 * √13 );3 ) y = 8 / ( x - 6 ) при x ( 0 ) =1 ; y \' = ( - 8 * ( x - 6 ) \' ) / ( x - 6 ) ^ 2 = - 8 / ( x - 6 ) ^ 2 = - 8 / ( 1 - 6 ) ^ 2 = - 8 / ( - 5 ) ^ 2 = - 8 / 25 ; 4) y = √ ( х + 5) при х(0) =4 ; y \' = 1 / ( 2 * √ ( х + 5) ) = 1 / ( 2 * √ ( 4 + 5) ) = 1 / ( 2 * √9 ) = 1 / ( 2 * 3 ) = 1 / 6.