( 1 / ( x ^ 2 - 7 * x + 12 ) + ( x - 4 ) / ( 3 - x ) ) * √ ( 6 * x - x ^ 2 ) < = 0 ; ( 1 / ( ( x - 3 ) * ( x - 4 ) ) + ( x - 4 ) / ( 3 - x ) ) * √ ( 6 * x - x ^ 2 ) < = 0 ; ( 1 / ( ( x - 3 ) * ( x - 4 ) ) - ( x - 4 ) / ( x - 3 ) ) * √ ( 6 * x - x ^ 2 ) < = 0 ; ( 1 - ( x - 4) * ( x - 4 ) ) / ( ( x - 3 ) * ( x - 4 ) ) * √ ( 6 * x - x ^ 2 ) < = 0 ; ( 1 - x ^ 2 + 16 ) / ( ( x - 3 ) * ( x - 4 ) ) * √ ( 6 * x - x ^ 2 ) < = 0 ; ( 17 - x ^ 2 ) / ( ( x - 3 ) * ( x - 4 ) ) * √ ( 6 * x - x ^ 2 ) < = 0 ; 1 ) 17 - x ^ 2 = 0 ; x ^ 2 = 17 ; x = √ 17 ; x = - √ 17 ; 2 ) x - 3 не равен 0 ; x не равен 3 ; 3 ) х не равен 4 ; 4 ) √ ( 6 * x - x ^ 2 ) = 0 ; 6 * x - x ^ 2 = 0 ; x * ( 6 - x ) = 0 ; x = 0 ; x = 6 ; Тогда: - + - + - + - ;_ - √ 17 _ 0 _ 3 _ 4 _ √ 17 _ 6 _ ; Ответ: x < = - √ 17, 0 < = x < 3 , 4 < x < = √ 17, x > = 6.