Найдем производные функций: a ) y = ( x - 1 )/ lnx ^ 2 ; y \' = ( ( x - 1 ) \' * lnx ^ 2 - ( ( lnx ) ^ 2 ) \' * ( x - 1 ) )/ ( lnx ) ^ 4 = ( lnx ^ 2 - 2 * lnx * ( lnx ) \' * ( x - 1 ) )/ ( lnx ) ^ 4 = ( lnx ^ 2 - 2 * lnx * 1 / x * ( x - 1 ) )/ ( lnx ) ^ 4 = lnx * ( lnx - 2 / x * ( x - 1 ) )/ ( lnx ) ^ 4 = ( lnx - 2 / x * ( x - 1 ) )/ ( lnx ) ^ 3 ; b ) y = ( x - 1 ) * ln 2x ; y \' = ( x - 1 ) \' * ln 2x + ( ln 2x ) \' * ( x - 1 ) = ln 2x + 1 / ( 2 * x ) * ( 2 * x ) \' * ( x - 1 ) = ln 2x + 1 / ( 2 * x ) * 2 * ( x - 1 ) = ln 2x + 1 / x * ( x - 1 ) = ln 2x + ( x - 1 ) / x.