• Двое рабочих, работая вместе, могут сделать за один час 12 деталей. Первый рабочий, работая отдельно, сделает 28 деталей

Ответы 1

  • Решение. Пусть первый рабочий может сделать за час х деталей, тогда второй рабочий может сделать за один час (12 – х) деталей, так как двое рабочих, работая вместе, могут сделать за один час 12 деталей. Первый рабочий, работая отдельно, сделал 28 деталей за (28 : х) часов, второй рабочий сделал 25 деталей за 25 : (12 – х) часов. Зная, что первый рабочий выполнил работу на один час быстрее, чем второй рабочий, составляем уравнение: 28 : х + 1 = 25 : (12 – х);упростим дробно-рациональное уравнение, приведя его слагаемые к общему знаменателю, и умножив обе части уравнения на общий знаменатель х ∙ (12 – х),после приведения подобных слагаемых, получим:х² + 41 ∙ х – 336 = 0;решим квадратное уравнение, для этого найдём дискриминант D = 3025; х₁ = – 48, не удовлетворяет условию задачи;х₂ = 7 (деталей) может сделать за час первый рабочий;12 – 7 = 5 (деталей) может сделать за час второй рабочий;50 : 5 = 10 (часов) потребуется второму рабочему, чтобы сделать 50 деталей.Ответ: за 10 часов второй рабочий может сделать 50 деталей.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years