Обозначим первые три числа через а1, а2 и а3, а шесть других чисел через а4, а5, а6, а7, а8, а9.Согласно условию задачи, сумма трех первых чисел равна 10.23, следовательно, справедливо следующее соотношение:а1 + а2 + а3 = 10.23.Также известно, что среднее арифметическое шести других чисел равно 2.9, следовательно, справедливо следующее соотношение:(а4 + а5 + а6 + а7 + а8 + а9)/6 = 2.9,илиа4 + а5 + а6 + а7 + а8 + а9 = 2.9*6 = 17.4.Находим теперь среднее арифметическое всех девяти чисел: (а1 + а2 + а3 + а4 + а5 + а6 + а7 + а8 + а9)/9 = ((а1 + а2 + а3) + (а4 + а5 + а6 + а7 + а8 + а9))/9 = (10.23 + 17.4)/9 = 27.63/9 = 30.07.Ответ: среднее арифметическое всех девяти чисел равно 30.07.