1. Воспользуемся формулой tg (a - b) = (tg a - tg b) / (1 + tg a * tg b):tg (π/4 - 2 * x) = (tg (π/4) - tg (2 * x) ) / (1 + tg (π/4) * tg (2 * x) );2. ctg x = 4tg x = 1 / ctg x = 1/4;3. Теперь воспользуемся формулой tg 2a = (2 * tg a) / (1 - tg^2 a):tg (2 * x) = (2 * 1/4) / (1 - (1/4)^2) = (1/2) / (1 - 1/16) = (1/2) / (15/16) = 8/15;4. Вычисляем tg (π/4 - 2 * x):tg (π/4 - 2 * x) = (tg (π/4) - tg (2 * x) ) / (1 + tg (π/4) * tg (2 * x) ) = (1 - 8/15) / (1 + 1 * 8/15) = (7/15) / (23/15) = 7/23.5. Ответ: 7/23.