Log2 (x - 1)/(x + 1) + log(x + 1)/(x - 1) 2 > 0.Log2 (x - 1)/(x + 1) > -1/(log2 (x + 1)/(x - 1)).Log2 (x - 1)/(x + 1) > 1/(log2 ((x + 1)/(x - 1))^(-1)).Log2 (x - 1)/(x + 1) > 1/log2 (x - 1)/(x + 1).Умножим обе части на log2 (x - 1)/(x + 1).(log2 (x - 1)/(x + 1))^2 > 1.log2 (x - 1)/(x + 1)) > ±1.log2 (x - 1)/(x + 1) ≠ 0.log2 (x - 1)/(x + 1) ≠ log 2 1.(x - 1)/(x + 1) ≠ 1.X + 1 ≠ 0, x ≠ -1.1) Тогда, log2 (x - 1)/(x + 1) > 1.log2 (x - 1)/(x + 1) > log2 2.Так как основание логарифма 2 > 1, следовательно,(x - 1)/(x + 1) > 2.X – 1 – 2 * (x + 1) > 0.X < -3.2) Тогда, log2 (x - 1)/(x + 1) > -1.log2 (x - 1)/(x + 1) > -log2 2.log2 (x - 1)/(x + 1) > log2 1/2.Так как основание логарифма 2 > 1, следовательно(x - 1)/(x + 1) > 1/2.X – 1 – 1/2 * (x + 1) > 0.½ * X > 3/2.X > 3.