(2x - 4y)/5 = (4x + 6y)/3; (x + y)/4 = (y – 2)/6 – преобразуем уравнения, применив основное свойство пропорции: В верной пропорции произведение крайних членов пропорции равно произведению средних членов пропорции;3(2x – 4y) = 5(4x + 6y); 6(x + y) = 4(y – 2);6x – 12y = 20x + 30y; 6x + 6y = 4y – 8 – выразим из второго уравнения системы у через х;6x + 6y = 4y – 8;6y – 4y = - 6x – 8;2y = - 6x – 8;y = (- 6x – 8) : 2;y = - 3x – 4 – подставим в первое уравнение системы вместо у выражение (- 3х – 4);6x – 12y = 20x + 30y;6x – 12(- 3x – 4) = 20x + 30(- 3x – 4);6x + 36x + 48 = 20x – 90x – 120;6x + 36x – 20x + 90x = - 120 – 48;112x = - 168;x = - 168 : 112;x = - 1,5;y = - 3x – 4 = - 3 * (- 1,5) – 4 = 4,5 – 4 = 0,5.Ответ. (- 1,5; 0,5).