• 1) Найдите сумму первых пяти членов геометрической прогрессии (bn), у которой b1=6, q=1/3 2) Найдите сумму 2х+1+(1/2х)+...+(1/32х^5)

Ответы 1

  • 1 ) Сумма геометрической прогрессии определяется по формуле:Sn = b1 * (1 - q^n) / (1 - q), где Sn -сумма, b1 - первый член, q - знаменатель, n - количество членов.S6 = 6 * (1 - (1/3)^6) / ( 1 - 1/3) = 6 * (1 - 1/729) * 3 / 2 = 9 * 728/729.2) Данная последовательность является геометрической b1 = 2x, q = 1/2x.Тогда сумма 7-ми ее членов равна:S7 = 2x * (1 - (1/2x)7 / (1 - 1/2x).
    • Автор:

      moochie
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years