1) Обозначим меньший катет треугольника а. Тогда второй катет(а + 2), гипотенуза (а + 4). По теореме Пифагора:а^2 + (а + 2)^2 = (а + 4)^2;а^2 + а^2 + 4a + 4 = а^2 + 8a + 16;а^2 - 4а - 12 = 0;D = (- 4)^2 - 4 * 1 * (- 12) = 16 + 48 = 64.а1 = (4 + 8)/2 = 6;а2 = (4 - 8)/2 = -2 - отрицательный корень нас не интересует.Вычислим площадь треугольника:S = 6 * (6 + 2) / 2 = 24.2) Пусть объем заказа 1. Первый завод выполняет работу за х дней, второй за х + 8 дней. За один день первый завод выполняет1/х часть заказа, второй 1/(х + 8). За 24 дня заводы вместе выполняют:24/х + 24/(х+8) = 5 * 1;Умножим обе части уравнения на х(х + 8):24(х + 8) + 24х = 5х(х + 8);24х + 192 + 24х = 5х^2 + 40х;5х^2 + 40х - 48х - 192 = 0;5х^2 - 8х - 192 = 0;D = 64 + 4 * 5 * 192 = 3904.Квадратный корень из 3904 иррациональное число, поэтому уравнение не имеет целочисленных решений. Где-то в условии задачи допущена ошибка.